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We show that two-dimensional ‘point’ vortex dynamics in both a polytropic fluid 
of y = 3/2 and an isothermal fluid stratified by a constant gravitational field can 
be written in Hamiltonian form. We find that the formulation admits only one 
constant of the motion in addition to the Hamiltonian, so that two vortices are the 
most for which the motion is generally integrable. We study in detail the two-vortex 
problem and find a rich collection of behaviour: closed trajectories analogous to the 
circular orbits of the uniform-fluid two-vortex problem, open trajectories for which 
the self-propelled vortices scatter off each other, and both unstable and stable steadily 
translating pairs of vortices. Comparison is made to the case of two vortices in a 
uniform-density fluid bounded by a wall. 

1. Introduction 
Vortex dynamics in a constant-density fluid has a long history, beginning with 

the seminal work of Helmholtz (1867). For the case of a two-dimensional fluid, 
early work includes Helmholtz’s treatment of the two-vortex problem, Kirchhoff’s 
(1876) demonstration of the Hamiltonian nature of point vortex dynamics, and 
Grobli’s solution (1877; see also Aref, Rott & Thomann 1992) of the three-vortex 
problem. More recently, interest has focused on, among other things, several-vortex 
systems (Novikov 1976; Novikov & Sedov 1978; Aref & Pomphrey 1982; Aref 
1983), applications to two-dimensional turbulence (Onsager 1949 ; Kraichnan & 
Montgomery 1980; McWilliams 1990; Chorin 1994), and vortex dynamics in a 
rotating fluid (Morikawa 1960; Charneyl963; Hogg & Stommel 1985), with the 
Hamiltonian formalism finding application in each. 

Vortex dynamics in barotropic fluids stratified by a constant gravitational field has 
also been investigated (Arendt 1993a,b), but has received much less attention. Here 
the barotropic restriction prevents the usual baroclinic creation and destruction of 
vorticity so that Kelvin’s theorem of conservation of circulation applies; vortices are 
persistent entities in such a fluid. The crucial effect of the density stratification is the 
self-propulsion of a straight vortex tube. This propulsion, which has no counterpart 
for vortex tubes in a uniform density fluid, is in the ij x h direction, where 3 is the 
direction of gravity, and has a magnitude roughly proportional to the inverse of the 
local density scale height of the fluid. 

One expects the effect of stratification to be important when the density scale 
height of the fluid is comparable to other scales of a flow, e.g. the separation between 
vortices. The dependence of the self-propulsion on the inverse density scale height 
reflects this. Now, in the outermost regions of the convection zone of the Sun, the 
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density scale height becomes as small as 100 km, while fluid motion occurs on scales 
of 1000 km, taking granulation as an example. Here, then, the stratification and its 
consequent self-propulsion of vortices should be of prominent importance. Given the 
recent progress in using vortex dynamics to understand turbulence (Chorin 1994), 
we hope that the present results aid in understanding the dynamics of stratified-fluid 
turbulence as occurs in the convection zone of the Sun. Exploring this connection is 
left for future work, but it provides motivation for the present work. 

Relaxing the barotropic assumption to allow for a stable stratification leads to 
baroclinic production of vorticity via the buoyancy force; such vorticity production 
is not contained in the analysis of the present paper. However, if the Froude number 
of the vortices is kept large, then the present results are still approximately valid. The 
Froude number is essentially the ratio of the buoyancy or Brunt-Vaisala timescale to 
the advective flow timescale. If the Froude number is much greater than one, then 
the buoyancy restoring force acts slowly and the flow is free to evolve (temporarily) 
advectively while weakly radiating internal gravity waves. On the other hand, if the 
Froude number is much less than one, then a vortex dissolves entirely into internal 
gravity waves on a timescale short compared to an advective timescale and the results 
of the present paper do not apply. 

The purposes of the present paper are twofold: first, to develop the Hamiltonian 
formalism for two-dimensional point vortices in a barotropic stratified fluid, and 
second to provide a complete solution to the two-vortex problem. The latter is the 
simplest interaction described by the Hamiltonian, but it yields a startlingly rich 
array of vortex behaviour. We will also show that it is the only generally integrable 
interaction; the case of three or more vortices is non-integrable, at least in the 
absence of special symmetries. The analogous results for a uniform fluid are well 
known (Helmholtz 1867; Kirchhoff 1876; Aref 1983), and so a primary goal of this 
work is to investigate in detail the differences arising from the density stratification. It 
is here that the self-propulsion, primarily a density gradient effect, plays a crucial role. 

Each particular density stratification unfortunately requires a separate, but similar, 
analysis. We investigate the particular cases of a polytropic fluid having y = 3/2 
and an isothermal fluid; the former is presented in the main text of the paper 
and the latter is contained in Appendix C. The general Hamiltonian formalism for 
the problem of N vortices appears in $2. In $3,  we investigate the two-vortex 
problem in detail, dividing the problem into the case of like vortices (same sign of 
vorticity) and that of unlike vortices (different sign of vorticity). In 54, the results 
are summarized, and comparisons are made to uniform-density fluids, most notably a 
semi-infinite uniform-density fluid. Finally, Appendix A discusses the physical nature 
of the constants of the motion, and Appendix B reviews the two-vortex problem in a 
uniform fluid. 

2. Hamiltonian formulation 
In this section, we present a Hamiltonian formulation of two-dimensional vortex 

dynamics in a polytropic fluid layer stratified by gravity. We impose an impenetrable 
upper boundary on the fluid layer (such a boundary is generally necessary for 
barotropes to avoid an unphysical density, but see Appendix C for the case of an 
unbounded isothermal fluid), and denote the depth beneath this surface by IzJ, letting 
z range from 0 to -a. The fluid is taken to have y = 3/2 (P = CpY) to provide 
a rough match to solar conditions as well as for calculational convenience. The 
gravitational field is taken to be vertical and of constant magnitude, g = -gi, so 
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that the hydrostatic density is p = p , ( ~ / l ) ~ ,  where po/12 is a known constant. Finally, 
the flow velocity is assumed slow compared to the local speed of sound, so that the 
pressure and density may be linearized about their hydrostatic values. 

The simplest case of a single two-dimensional vortex has already been investigated 
extensively (Arendt 1993a,b), and we will use the results as the starting point for the 
present analysis. Consider, then, a vortex of strength K > 0 (i.e. total circulation 
with positive being counterclockwise) located at (y,z) = (yo,zo). Such a vortex is 
found to have a self-propulsion which propels it in the -j-direction, i.e. transverse 
to gravity. The self-propulsion is logarithmically singular in the ratio of the cross- 
sectional size to the density scale height, and so we cannot assume that the vortex 
is a true point vortex, but rather must endow it with a small, finite, cross-section. 
We will nonetheless continue to refer to these small vortices as 'point' vortices. Let 
the cross-section be circular (although strictly speaking there are small corrections 
added to this (Arendt 1993b)) with a radius given by b, and let b be small compared 
to the local density scale height given by A = (dlnp/dz)-' = zo/2.Within the circular 
core, the vorticity is taken to be proportional to the local density, so that the vorticity 
equation D(o/p)/Dt = 0 is satisfied. Having these cross-sectional specifications, the 
vortex automatically adjusts its core to fit changes in local density, and does not 
undergo 
1993a,b) 

with the 

any additional core deformations. In this case, it has been shown (Arendt 
that the streamfunction for the flow outside the vortex is 

) -zOz] 7 (2.1) 
In ( (Y - Y o ) 2  + (z - zo)2 

w o  (Y - y0l2 + z,' + z2 ( y  - yJ2 + (z + zo)2 
v = m [  4 

velocity field being given by pu = j d y / d z  - Bdy/dy. 
Using the fact that the vortex is transported by the local flow velocity, the equations 

of motion for the vortex are found to be (Arendt 199321) 

~ = 0. dz0 
dt 

Equation (2.2) gives explicitly the self-propulsion of the vortex. Assuming a different 
cross-sectional shape will produce a slightly different mathematical form for the self- 
propulsion, but will not change the result in any essential way. This self-propulsion 
is mainly a result of the density stratification: the vortex is pushed horizontally by 
expanding rising fluid on one side and pulled by contracting sinking fluid on the 
other thereby giving a net horizontal migration which is singular as b -+ 0 (see 
(2.2)). The presence of the upper boundary to the fluid layer also contributes to the 
self-propulsion somewhat, but its contribution does not depend on the core size of the 
vortex, and so it is not the dominant effect for small vortices. Furthermore, a vortex 
in an isothermal fluid without an upper boundary exhibits a similar self-propulsion 
(see Appendix C). 

Next, consider the case of two vortices; the case of N vortices will be seen to be a 
straightforward extension. Let the two vortices have circulations I C ~  and I C ~ ,  and be 
located at (yl, zl) and (y2, z2) respectively. Let both have cores as previously described 
with cross-sectional radii bl and b2, each small compared to both the local density 
scale height and the distance between the two vortices; again, these specifications 
ensure that the vortex cores self-adjust to varying local changes in density and suffer 
no additional core deformations. The motion of the two vortices is the sum of their 
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self-motion and their mutually induced motion. The self-motion for each is of the 
form of (2.2)-(2.3), while the mutual interaction is found via the streamfunction given 
in (2.1). Adding these, the equations of motion for the vortices are found to be 

where y1 and y2 are the streamfunctions of vortex 1 and 2 respectively, given by (2.1) 

Now, as a consequence of Kelvin’s theorem and the continuity equation, the total 
circulation of each vortex and the total mass of the fluid inside of each vortex is 
conserved. The latter fact gives 

with (Yo, zo) replaced by (Yl, z1) or (Y2, z2). 

where i = 1,2, and where the fact that each vortex is small compared to its local 
density scale height has been used. Equation (2.8) can be rewritten as 

bi = ci/lzil, (2.9) 

where ci is a constant. This is a physically reasonable result stating that the core size 
of the vortex decreases if the vortex moves into deeper, more dense, fluid. 

Using (2.9), we rewrite (2.4)-(2.7) as 

where 

(2.10) 

(2.11) 

(2.12) 

The first term in H is the mutual interaction found using (2.1),(2.5), and (2.7), while 
the last two terms are the self-interactions rewritten using (2.9) in (2.4) and (2.6). 
Defining the variables, qi = lciyi and ti = z:, we arrive at the usual Hamiltonian form 
of equations (2.10) and (2.11): 

(2.13) dqi - aH - -  - 
dt a t i ’  

(2.14) 
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It is straightforward to show that for the general case of N vortices, the equations 
of motion are (2.13)-(2.14) with the Hamiltonian H given by 

N N  3K.K. (Yi - Y j I 2  + 2' + 22 (yi - Y j ) 2  + (Zi + Z j ) 2  

(yi - Y j ) 2  + (zi - zj)2 
H = C C ' [  i=l j=1 4.n 4 ' l n (  

i=l 

(2.15) 

where i # j in the double sum, and where an additional factor of 1/2 has been added 
inside the double sum to avoid over-counting. Note that each vortex is characterized 
by a circulation strength ici as well as a cross-sectional size parameter ci. Here again, 
we have assumed that the cross-sectional radii bi, related to ci through (2.9), are 
all small compared to both the local density scale heights zi/2 and the distances to 
neighbouring vortices. It is a straightforward matter to show that if the density scale 
height is large compared to the separation between vortices, the above Hamiltonian 
reduces properly to that for a uniform-density fluid. 

The Hamiltonian system (2.13), (2.14), and (2.15) admits two constants of the 
motion. The first is the Hamiltonian itself which may be shown to correspond to 
the total energy of the system (see Appendix A). In this regard, the first term on the 
right-hand side of (2.15) may be thought of as the interaction energy of the vortices, 
and the second term as the self-energies of the individual vortices. 

The second constant of the motion is due to the invariance of the Hamiltonian 
with respect to translations in yi,  and is 

N N 

(2.16) 
i= 1 i=l 

The total circulation in the denominator of (2.16) cannot appear if it is zero; in this 
case, the expression (2.16) still applies with the term ELl I C ~  omitted. The quantity 
Z 3  is proportional to the total linear momentum in the 9-direction (see Appendix A). 
To verify that it is a constant of the motion, consider the Poisson bracket, defined as 

ab " "). (2.17) 

The Poisson bracket between the Hamiltonian H and any constant of the motion 
must be zero. For simplicity, consider the particular case N = 2, for which we find 

= 0, 
dH - 3 aH  aH dH 

[ Z , H ] = - + - =  
' Y l  dY2 d(Yl -y2)  d(y1 -y2)  

(2.18) 

where the intermediate step is valid because yl and y2 appear only in the combination 
(y1 - y2) in the Hamiltonian. The extension to the more general case of arbitrary N 
may be easily made. 

We now proceed to show that (2.16) is the only invariant linear in the circulation 
strengths of the vortices, i.e. it is the only invariant of the form 

N 

i=l 

First note that f ( y , z 3 )  must be independent of y .  This follows from considering the 
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case of a single vortex, which, as previously explained, translates horizontally with a 
constant depth, z, and varying horizontal position, y. Any constant of the motion 
of the form (2.19), then, cannot depend on y. Next, taking the Poisson bracket of F 
with H for the special case of N = 2, we find 

Setting this equal to zero, we have 

(2.20) 

(2.21) 

where we have again used the fact that y1 and y2 appear only in the combination 
(yl -y2) in the Hamiltonian. Now, the left-hand side of (2.21) is a function of z1 only 
and the right-hand side is a function of z2 only; the only possible solution is 

-- - C = constant. df(z3) 
dz 

(2.22) 

Hence, 
N 

F = C C I C ~ Z ~ ,  (2.23) 

so that F differs only by a constant of proportionality from Z 3  in (2.16). Thus Z 3  is 
the only linear invariant. 

The fact that there are only two constants of the motion implies that N = 2 is the 
largest number of vortices for which the motion is generally integrable. This follows 
from the fact that an N-dimensional Hamilitonian system (i.e. 2N total coordinates 
and momenta) is integrable if it has N constants of the motion in involution, where 
the constants are in involution if the Poisson bracket of each constant with every 
other is zero (Whittaker 1959). This result implies that three vortices will be stochastic 
in some regions of phase space, whereas two vortices will be regular everywhere. We 
contrast this with the case of an unbounded uniform-density fluid for which there 
are three constants of the motion in involution so that N = 3 is the highest number 
for which the motion is integrable. Of course, the introduction of special symmetries 
may increase the number of vortices for which there is integrable motion. 

It is of interest to ask where the effects of stratification appear in the Hamiltonian 
(2.15). Although the stratification affects the entire Hamiltonian to some degree, 
the principal effect lies in the self-energy (i.e. the second term in (2.15)), which is 
entirely absent from the Hamiltonian for an unbounded uniform-density fluid (see 
(B 1) in Appendix B). This term give rise to the self-propulsion of the vortices. A 
study of the two-vortex problem in the next section will reveal the changes that the 
presence of the self-energy introduces in the topology of the Hamiltonian contours. 
A similar self-energy is present for a bounded, semi-infinite uniform-density fluid (see 
(B7) in Appendix B). Vortices for this case have a self-propulsion induced by the 
presence of the wall bounding the fluid. However, there is an important difference 
in these two self-propulsions in that the stratification self-propulsion depends on the 
cross-sectional size of the vortex (in this case through ci), and can be made infinitely 
large by reducing the core size. On the other hand, the wall-induced self-propulsion 
depends only on the proximity of the vortex to the wall, and cannot be altered by 
changing the size of the vortex. 

i= 1 
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3. The two-vortex problem 
In this section, we investigate the motion of a pair of vortices using the Hamiltonian 

derived in the previous section. The trajectories of the vortices are given by H = 
constant from (2.12), subject to the constraint Z 3  = constant in (2.16). The time 
behaviour of the vortices around these trajectories is obtained by a solution to the 
dynamical equations (2.13)-(2.14); we will not pursue the time behaviour in the 
present paper, but will concentrate only on the trajectories. 

The description of the two-vortex problem is complicated by the presence of five 
parameters to be specified in (2.12) and (2.16): I C ~ ,  I C ~ ,  c1, c2, and Z3.  To simplify 
matters, we will assume that the cross-sectional size parameter, ci, is identical for each 
vortex: c1 = c2 = c. Furthermore, we will normalize the position coordinates of the 
vortices by IZJ in (2.16), using a tilde to denote normalized quantities, 

(3.1) 
- 
z1 = Zl/lZI, 
- 
z2 = Z2/IZI, 

Y = (Y1 - Y2)/IZI. 
- 

The normalized Hamiltonian is then 

where we have defined r = I C ~ / K ~  and f = ln(2Z2/c) +0.25. The normalized constant 
of the motion from (2.16) is 

5; + rTi = *(I + r ) ,  (3.5) 

where the sign on the right-hand side is chosen to be the sign of Z .  Now there remain 
only two free parameters in (3.4) and (3.5): r ,  giving the relative strengths of the two 
vortices, and f, a measure of the cross-sectional size of the vortices. For convenience, 
we will restrict the range of I to Irl > 1; the range 0 < Irl < 1 is available by switching 
the labels 1 and 2 on the vortices and is thus redundant. 

The normalization (3.1)-(3.4) is not defined for the case Z = 0 which can occur for 
r < 0. In this case, we will simply omit the term Z from (3.1)-(3.4), as well as from 
the definition of f. The expressions (3.4) and (3.5) are retained, with the right-hand 
side of (3.5) being zero for this case. 

3.1. Vortex pair of like sign 
We begin with the case of like vortices ( r  > 0), i.e. vortices having circulations of the 
same sign. As mentioned, we restrict the range of r to r 2 1. Before examining the 
topology of the trajectories, we note that equation (3.5) places strong restrictions on 
the relative locations of the vortices. Since r 2 1 and z1,z2 < 0, the minus sign on the 
right-hand side of (3.5) applies. Equation (3.5) then implies that the two vortices are 
confined in a layer of fluid just under the surface and extending to a (normalized) 
depth of -(1 + r)1/3 for 51, and -((1 + r)/~-)’’~ for 52. The vortices cannot travel past 
this depth, and, furthermore, if one vortex is at its maximum depth, the other must 
be simultaneously broaching the surface. 

We solve (3.5) for 5 2  as a function of TI, and substitute this result into (3.4). The 
condition that the Hamiltonian is a constant of the motion then gives the vortex 
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FIGURE 1. Contours of the Hamiltonian for r = 1.0 and r = 25.0 showing the central 0-point. 

trajectories in the plane Z; versus j7. As a first example, for Y = 1 and r = 25.0 
we obtain the contour map shown in figure 1. Since the Hamiltonian is symmetric 
in j7, only half the domain is shown; the other half is obtained by reflecting about 
the ?;-axis. Figure 1 is plotted using the difference of the horizontal coordinates, 
y = ( y l  - y 2 ) / Z ,  so it represents the motion in a reference frame that moves along 
with the overall horizontal translation of the vortices; it displays the position of 
vortex #1 relative to the vertical upper boundary of the fluid layer and relative to the 
horizontal position of vortex #2. Of course, a similar figure can be made to show the 
position of vortex #2 instead. 

Consider first the middle portion of figure 1. The 0-point in the centre corresponds 
to the orbital 0-point in the trajectories of the unbounded uniform-fluid two-vortex 
problem (see e.g. Appendix B). Close to the 0-point the separation between the 
vortices is small compared to the local density scale height, so that the mutual 
interaction of the two dominates the self-propulsion and the vortices circle each other 
as they would in a uniform-density fluid. This 0-point is present for any value of 
r > 1, and occurs at Zl = Z2 for which H --+ -a. Using ( 3 4 ,  we find 

- 

( y )O-po in t  = 0. (3.7) 
Of course, very close to the 0-point, the 'point' vortex approximation breaks down, 
and the solution is no longer meaningful. 

At a certain distance away from the central 0-point, the orbits are no longer 
closed, but rather are open. In figure 1, the transition occurs at fi 2: 48.0. This 
is a consequence of the stratification, and, in particular, the self-propulsion of the 
individual vortices. If the vortices are sufficiently far apart, their self-propulsions are 
larger than the mutual interaction, which lessens with distance. One self-propulsion 
is generally larger than the other since each vortex has a different depth (see the 
functional dependence of the self-propulsion term in (2.2)), and so the vortices tend 
to separate, and eventually become infinitely far apart. The signature of the smaller 
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r 

FIGURE 2. Location of the X-point at 7 -+ co for r > 0. The solid curve is for r = 10.0, 
the dotted curve, r = 25.0, and the dashed curve r = 125.0. 

mutual effect can be seen in the open trajectories near j7 = 0 where each vortex is 
deflected from its otherwise straight path by its partner. 

The sharpness of the transition between closed and open orbits in terms of the 
corresponding values of H is startling. The separatrix dividing the two sets may be 
thought of in terms of two X-points at j7 -+ +a. The X-points are found by solving 
dfi/(dZ;) = 0 as j7 -+ fa. For a general value of r > 1, this gives the transcendental 
equation 

which may be solved numerically for each value of r and r ; solutions are shown in 
figure 2. 

If r is varied with r fixed, the symmetry about 2: = 1.0 in figure 1 is lost, but 
the overall topology is unaffected until a critical value of r is reached. Above this 
critical value of r ,  a new pair of fixed points appears over the central 0-point, as 
shown in figure 3 for the case r = 2 and r = 25.0. Here the new fixed points 
appear at 2: 2: -0.35 and 5: N -0.63. These fixed points have a finite value of the 
Hamiltonian (as opposed to the singular Hamiltonian for the central 0-point), and 
correspond to steady translational solutions for the two vortices. That is, each fixed 
point represents the two vortices translating steadily as a pair, one above the other, 
with their self-propulsions and mutual interactions exactly balancing. Clearly, the 
0-point represents a stable translating pair and the X-point represents an unstable 
pair. The closed orbits in figure 3 now comprise three distinct sets: those surrounding 
the central 0-point (e.g. fi = 131.5), those surrounding the finite-fi 0-point (e.g. 
fi = 130.35), and those surrounding all three fixed points (e.g. fi = 129.9). As before, 
open orbits reside at the very top and bottom of the domain. 

To shed more light on these fixed points, we note that they may be determined by 
solving the equation dH/dZ l  = 0 along j7 = 0. The resulting transcendental equation 
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FIGURE 3. Contours of the Hamiltonian for r = 2.0 and r = 25.0 showing the central 0-point and 

the X-0  fixed point pair above it. 

is found, after considerable algebra, to be 

- where we have defined x as 

(3.10) 

and where we have used (3.5) in the simplification. Note that for a given choice of 
parameters r and r the left-hand side of (3.9) is a constant while the right-hand side 
varies only with the ratio x ,  with the applicable range for x being 0 < x < 00. 

We will show in a moment that (3.9) has several solutions, but some of these 
will violate the 'point' vortex assumption that the core size of the vortices be small 
compared to both their local density scale heights and the distance between the two 
vortices. Mathematically, these conditions are 

z 2  

Z1 

x = -  - ,  

where we have put each condition into a form easily used in conjunction with (3.9). 
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Note that of the four conditions above, (3.12) is most stringent for 0 d x d 0.5, (3.14) 
for 0.5 < x < 1.0, (3.13) for 1.0 < x < 2.0, and (3.11) for 2.0 < x ,< co. 

To proceed with an example of the solution of (3.9), the solid line in figure 4(a) 
shows the right-hand side of (3.9) as a function of x for r = 2. For a given value of r ,  
a fixed point occurs where this function equals I‘. Also shown as a dotted line is the 
right-hand side of the condition that the ‘point’ vortex assumption not be violated, 
where we have taken the most stringent condition of the above four for each value of 
x. For a physical fixed point, the value of r chosen must lie above the dotted line at 
the location of the fixed point in x. From figure 4, we see that the pair of fixed points 
occurs for r > 20.0, and that the corresponding values of x for the fixed points lie 
between 1 and r. The overall shape of these curves (but not the details) persists as 
r is varied until r > 7.57, whereupon they change to those shown in figure 4(b) for 
the case r = 8. Here we see that fixed point solutions occur for roughly r > 3.0, and 
that one solution lies in the range 1 < x < r and the other in x > r. For lower values 
of r ,  fixed points will still occur in the topology of the orbits, but they will not be 
physical solutions for ‘point’ vortex motion. 

3.2. Vortex pair of unlike sign with Z 3 0 
In this section we consider vortices having opposite signs. As explained previously, 
we will restrict our attention to the range r < -1; the range -1 < r < 0 may be 
explored by switching the labels on the two vortices, and so provides nothing new. 
As in the previous subsection, we will find that (3.5) restricts the relative positions of 
the two vortices strongly, and in fact determines to a great extent the topology of the 
trajectories. Given this, we subdivide the problem further into two parts: Z 2 0 and 
z < 0. 

Consider the effect of equation (3.5) for the case Z 3 0, for which we use the plus 
sign on the right-hand side of (3.5). Equation (3.5) implies that lr11’3\Z21 < lZll so 
that lZll Thus the stronger vortex (i.e. the vortex with the larger circulation) 
always lies shallower than the weaker vortex. We will have more to say about the 
implications of this in a moment. 

In order to become familiar with an example, consider the case of two vortices 
having equal and opposite circulations, r = -1, and being symmetrically placed so 
that Z = 0. For this case the normalized expressions (3.1)-(3.5) are used with the 
term Z omitted. From ( 3 3 ,  we find that ZI = 52,  and the Hamiltonian becomes 

- y 2 + 2 q  y2+4q  
H = ~ Z ; ( I ~ Z ; - - I + ~ ) -  ( In ( y2 ) -2Y;) . (3.15) 

An example of the contours of constant H is shown in figure 5 for the case r = 5.0. 
As before, the Hamiltonian has reflection symmetry about the ?-axis so that only 
the range > 0 is shown. If the first vortex is placed on a given trajectory in figure 
5, the second vortex occupies the same trajectory in the reflected portion of figure 5. 

The vortices traverse the curves as a pair at an equal height, their direction of 
motion being determined by their relative signs. Suppose they traverse the curves 
from bottom to top. The mutual effect of one vortex on its partner is then to push it 
upward and attract it horizontally, while the self-propulsions, which in this case are in 
opposite directions, cause horizontal repulsion. The self-propulsions are here always 
stronger than the mutual attraction, and so the vortices move upward and apart. As 
they move upward, the local density scale height decreases so that their self-motions 
increase (see (2.2)) and they move apart at a faster rate. As they move apart, the 
mutual interaction decreases and their upward motion lessens. The vortex pair thus 
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FIGURE 4. Right-hand side of (3.9) shown as a solid line and the most stringent of (3.11)-(3.14) 
shown as a dotted line, for (a)  r = 2.0, ( b )  r = 8.0. 

migrates upward at a steadily decreasing rate and spreads apart at an increasing 
rate, accounting for the transition from almost-vertical motion to almost-horizontal 
motion seen in figure 5. 

Consider the asymptotic behaviour of the trajectories, beginning with 7 + 200. In 
this limit, the mutual interaction term in the Hamiltonian goes to zero, and we find 

H -+ 2Zt [~nZt - 1 + r ]  . (3.16) 

The solution of this equation for a given value of fi gives the asymptotic vertical 
location of the vortices, as long as this solution satisfies the ‘point’ vortex condition 
that the cross-section be small compared to both the local density scale height, z / 2 ,  
and the distance between the two vortices. 

On the other hand, in the second asymptotic limit ZI + -00, it can be shown 
that the ‘point vortex’ approximation always breaks down. In this limit we have, 

- 
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showing scattering trajectories. 

Y 

from (3.15), 

(3.17) 

As F1 grows, the quantity inside the square brackets must decrease to maintain a finite 
value of 6. In the limit where it decreases to zero we have 

Hence, ljrl -+ 0 as Fl -+ -a, but as this limit is attained we find 

(3.18) 

(3.19) 

which violates the point vortex approximation. Thus, at some depth the vortices al- 
ways come close enough to interact strongly and cannot be treated as point vortices; 
they might be said to collide. 

Next, retaining the zero on the right-hand side of (3.5), consider the more general 
case r # -1. As an example, curves of constant are shown in figure 6 for r = -2 
and r = 5.0. Here the vortices may be thought of as scattering off each other. 
Suppose they start at (yl, z1) = (+a, dl) and (y2, z2) = (-a, d2), and begin moving 
inward due to their self-propulsions. The mutual interaction of each on the other 
pushes both downward, but due to their imbalance in strength the vortices do not 
move symmetrically ever downward as they did for r = -1. Rather, they pass 
each other, with the weaker going under the stronger. After passing, the mutual 
effects push each back upward, and they end their journey at (yl,zl) = (-a,dl)  and 
(y2,zz) = (+a,d2). The case of Z 3  > 0 gives scattering-type trajectories similar to 
these, and yields nothing new. 

It has probably not escaped the reader's attention that there are no fixed points 
in the trajectories of this subsection. This is entirely due to the stronger vortex lying 
always shallower than the weaker one, which was shown earlier. To see the connection 
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FIGURE 6. Contours of the Hamiltonian for r = -2.0, r = 5.0, and Z = 0, 
showing scattering trajectories. 

to fixed points, first note that at a fixed point the Hamiltonian may be either singular 
or finite. A singular Hamiltonian corresponds to the two vortices orbiting around 
each other, as they do in the uniform-fluid two-vortex problem; clearly if one vortex 
is constrained to be below the other, as in the present case, they cannot orbit in this 
manner and so singular fixed points cannot occur. 

The finite-Hamiltonian fixed point corresponds to a steadily translating pair of 
vortices. Now, for such a pair to exist, it has been shown (Arendt 1995) that it is 
necessary that &-(K x Utranslation) > 0. In the present case, this inequality is not satisfied. 
To see this, note that for r < 0 the lower vortex is propelled in the same direction by 
both its own self-propulsion and the mutual effect of the shallower vortex on it. It 
follows that the direction of translation of the pair as a whole must be in the direction 
of the self-propulsion of the lower vortex. This is such that 2 * ( ~ l ~ ~ ~ ~  x Utranslation) > 0, 
and since the upper and lower vortices have opposite signs, ~ * ( I c , ~ ~ ~ ~  x Utranslation) < 0. 
Now, Iicupperl > I l t l ower l  since the stronger vortex lies above than the weaker, and we 
have 2-(xtotal x Utranslation) < 0, which is the opposite of what is required. Therefore, 
steadily translating pairs of vortices, or, equivalently, finite-Hamiltonian fixed points, 
cannot occur for Z > 0. 

3.3. Vortex pair of unlike sign with 2 < 0 
Consider next the case 2 < 0, for which the minus sign on the right-hand side 
of (3.5) applies. For this case, equation (3.5) implies that 1r(1/31221 > lZ1l so that 
lT2/Z11 > 1r1-1/3 < 1; the stronger vortex can be either above or below the weaker 
vortex. We thus expect that fixed points will occur in the Hamiltonian contours. 

A sample set of Hamiltonian contours for r = -2.0 and r = 25.0 is shown in 
figure 7 ( a ) .  The enlargement of the region around Zl = -1.0 in figure 7 ( b )  shows two 
fixed points, the lower of which is the central 0-point. Here, 7 -+ 0 and (51 -52) -+ 0 
so that fi -+ co. From (3.5), the location of the 0-point is given by (3.6) and (3.7) 
as before. Above the central 0-point lies an X-point, at which the Hamiltonian is 
finite. The exact location of the X-point must be found numerically by searching for 



Vortex dynamics in a stratijiedfluid 

-0.4 

-0.6 

153 

1 

85.0 

95.0 
; 

- - 

7 - 105.0 

F " " "  " ' " "  I r ' l " ' l " ' l ' 4  

(a> 75.0 -0.2 

-1.2 1 
0 0.01 0.02 0.03 0.04 - 

Y 
FIGURE 7. (a) Overview of contours of the Hamiltonian for r = -2.0, r = 25.0, and Z < 0, showing 
scattering trajectories. (b)  Enlarged view showing the central O-point at 2: = -1.0 with an X-point 
above. 

a local minimum of the Hamiltonian along the ?;-axis. The governing equation has 
been given previously in (3.9), and the conditions for the fixed point to satisfy the 
'point vortex' approximation are given in (3.11)-(3.14). An example of the right-hand 
side of (3.9) for r = -2 is shown in figure 8 as the solid curve with the condition for 
the point vortex approximation shown as the dotted curve. As before, the value of 
r at the location of the fixed point must be greater than the dotted curve. We see 
that there is one solution for a given r ,  as long as r is greater than about 3.0, and 
that it occurs at an x greater than 1.0. The overalI shapes of the curves in figure 10 
are unaffected by varying r ; only the details change. We conclude that for a general 
r < -1, one X-point will be present in the topology of the orbits and that it will be 
physical as long as r is sufficiently large. 
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FIGURE 8. Right-hand side of (3.9) shown as a solid line and the most stringent of (3.11)-(3.14) 
shown as a dotted line, for r = -2.0. 

Given the two fixed points, the orbits may be divided into a class of closed orbits 
as shown in figure 7(b),  surrounded on all sides by open orbits as shown in both 
figures 7(a) and 7(b). The closed orbits are analogous to the closed circular orbits 
of two unlike vortices in a uniform fluid; as these are due to the mutual interaction, 
they only occur when the vortices are sufficiently close. The open orbits resemble 
those in figure 6,  and have the same scattering interpretation. The X-point provides 
the separatrix between the sets of open and closed orbits. It represents a pair of 
vortices steadily propagating horizontally, one above the other, with self-propulsions 
and mutual effects exactly balancing. Note that the self-motions are in opposite 
directions, so that the vortices must be close enough to provide a strong mutual 
interaction capable of overriding the self-propulsions. 

4. Discussion 
In this paper we have demonstrated the Hamiltonian nature of the motion of 

small vortices in both polytropic and isothermal stratified fluids where each has been 
considered to be barotropic. We have derived the Hamiltonian and have shown that it 
corresponds to the total energy of the flow. We have also shown that there exists only 
a single additional constant of the motion; this corresponds to the horizontal linear 
momentum of the flow. It follows that two vortices are the most for which the motion 
is generally integrable in our fluid. For a higher number of vortices, the motion is 
non-integrable, at least in the absence of any special symmetries. For comparison, 
an unbounded uniform-density fluid has four constants of the motion (including the 
Hamiltonian) three of which are in involution, while a bounded semi-infinite uniform 
fluid has two constants of the motion, as in the present case. As a result, for an 
unbounded uniform fluid three vortices but no more exhibit integrable motion, while 
for a semi-infinite uniform fluid two vortices are the most for which the motion is 
integrable. 

The lower number of constants of the motion for a stratified fluid has a further 
important effect for a set of like-signed vortices. In a uniform fluid, the constants of 
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the motion, in particular the angular momentum, serve to confine the vortices to a 
region surrounding a central point which is commonly called the centre of vorticity. 
However, in the stratified fluid case, we find that the vortices are only confined in the 
vertical direction (i.e. parallel to gravity), while their extent in the horizontal direction 
may be infinitely large. For example, an infinite separation occurs asymptotically in 
the open trajectories shown in figures 1 and 3 .  Physically, this result is due to the 
self-propulsion of the vortices: each vortex has its own motive power and can propel 
itself away from the others if their effects are not too great. A similar mechanism 
yields the same result for the semi-infinite uniform fluid, but vortices in an unbounded 
uniform fluid, having no self-propulsion, cannot separate themselves singly from the 
pack. 

The second half of this paper investigates the case of two vortices in a polytropic 
fluid; these display a rich collection of solution trajectories, much more varied than 
the case of two vortices in an unbounded uniform fluid, but, as we shall see, very 
similar to those of a semi-infinite uniform fluid. To summarize the results of the 
paper, we find that the topology depends on the sign of the parameters r and 2 and 
on the numerical value of r ,  where r = rc2/1cI is a measure of the relative strength of 
the two vortices, 2 is the conserved quantity corresponding to the linear momentum 
of the flow, and r ,  defined in 9 3,  provides a measure of the cross-sectional size of 
the vortices. Focusing only on the fixed points of the Hamiltonian orbits, we find 
that for the case r > 0 there is always a central 0-point at which the Hamiltonian is 
singular corresponding to mutually induced circular orbits of the two vortices, and 
there are two additional fixed points (one X-point and one 0-point) if the value of r 
is sufficiently high. These last correspond to horizontally translating pairs of vortices ; 
the X-point denotes an unstable pair, and the 0-point a stable pair. For the case 
r < 0 and 2 < 0, there is again a central 0-point for which the two vortices orbit 
each other, and there is also an X-point if r is sufficiently large corresponding to an 
unstable translating pair of vortices. Finally, for the case r < 0 and 2 3 0, there are 
no fixed points whatsoever. 

It is interesting to compare these results to the case of a uniform-density fluid in 
order to determine the effect of the density stratification. For an unbounded uniform 
fluid, the Hamiltonian has an exceedingly simple topology: closed orbits surrounding 
a central 0-point (at which the Hamiltonian is singular) for all cases except r = -1. 
For r = -1, the Hamiltonian contours are simply straight lines. As expected, the 
behaviour around the central 0-point is reproduced for a stratified-fluid when the 
vortices are sufficiently close. 

A better configuration for comparison is that of two vortices in a uniform-density 
fluid bounded above by a wall. For this case, the fluid possess an upper boundary like 
the polytropic fluid and the vortices have a self-propulsion similar to the stratified- 
fluid self-propulsion. This problem is reviewed in Appendix B. For the case of unlike 
vortices, r < 0, the Hamiltonian topology is the same as for the stratified fluid: if 
2 < 0, there is a central 0-point at which the Hamiltonian is singular and an X-point 
at which the Hamiltonian is finite, while if Z 3 0 there are no fixed points at all. 
However, for the case of like vortices, r > 0, differences arise. In particular, the 
semi-infinite uniform fluid contains only the central 0-point, and not the two other 
fixed points found for the stratified fluid. Equivalently, steadily translating pairs of 
like vortices are not possible for a semi-infinite uniform fluid. Physically, this arises 
because the self-propulsion is not large enough to overcome the mutual interaction. 
This is not surprising, since this self-propulsion is due to the mutual effect of an 
image vortex, and so cannot be made large compared to the mutual interaction. On 
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the other hand, in a stratified fluid the self-propulsion is due primarily to the density 
stratification and is strongly dependent on the cross-sectional size of the vortex. As it 
can be made large compared to the mutual effects by making the vortex core smaller, 
we expect fixed points when r is large (which is the same as the cross-section being 
small), and this is precisely what we see. We conclude that the self-propulsion of 
vortices is the main effect of the density stratification, and that this is reflected in the 
topology of the Hamiltonian via both open trajectories and finite-Hamiltonian fixed 
points. 

It is interesting to also look into the case of an isothermal fluid, which, unlike 
the polytropic fluid, requires no upper boundary. The Hamiltonian formulation is 
presented in Appendix C, and, although we do not do so here, one finds that the 
Hamiltonian topology for unlike vortices ( r  < 0) is the same as has been discussed 
above for the polytrope and the semi-infinite uniform fluid. However, for like vortices 
( r  > 0) the central 0-point is accompanied by two X-points, one above and one 
below. Thus, for different stratifications the presence of additional fixed points due 
to the self-propulsion seems to be robust, but their type and location is not. 

We conclude by noting an unusual feature of the vortex self-propulsion, brought out 
by a comparison of the stratified fluid results with those for a uniform fluid. It seems 
reasonable to say that, in the case of two interacting vortices, stratification effects 
should become important when the density scale height of the fluid is comparable 
to, or smaller than, the separation between the vortices. This reasoning is true if the 
cross-sectional size of the vortices is not too small, since one can then show from 
(2.4) that the self-propulsion of the vortices is roughly 7c/(27d) where il is the density 
scale height, and the mutual effect of each vortex on the other is of order ~/ (27cd)  
where d is the separation between the vortices. So if il >> d, the mutual effects are 
larger. However, if the core size, b, of the vortices is then made exceedingly small, 
the self-propulsion becomes infinitely large, being proportional to In( b/il), while the 
mutual interaction is unchanged if d is held fixed. Hence, the self-propulsion can be 
much larger than the mutual interaction even if il >> d ,b .  It is a unusual state of 
affairs wherein making the size of the vortex smaller compared to the density scale 
height increases the relative importance of the stratification-induced self-propulsion ! 
The resolution of the paradox is found in noting that relative to a vortex’s own 
local circulation, the size of the self-propulsion decreases as the cross-sectional size 
decreases, but relative to the (more or less fixed) mutual effect of neighbouring 
vortices, the self-propulsion increases. This effect is related to the set of fixed points 
for r > 0; these fixed points are dependent on a large self-propulsion for their 
existence and appear when the core size is sufficiently small. 

Much of this work was completed at the High Altitude Observatory of the National 
Center for Atmospheric Research (NCAR); the author wishes to thank the Advanced 
Study Program for support while at NCAR. NCAR is sponsored by the National 
Science Foundation. Partial research support was also provided by the Norwegian 
Defence Research Establishment. 

Appendix A 
In this Appendix, we show that the Hamiltonian and the additional constant of the 

motion found in 5 2 correspond to the fluid energy and linear momentum respectively. 
Consider first the energy of a collection of vortices. It has previously been shown 
(Arendt, 1993c) that the total energy (gravitational, internal, and kinetic) of a flow in 
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a barotropic stratified fluid with u << cs is equal to just the kinetic energy, and it may 
also be shown that the kinetic energy of such a flow in two dimensions is given by 

Ek = - 1 y w  1 dA, 
2 

where the area of integration is all space. If we denote the vorticity and streamfunction 
of the ith vortex by yi and mi respectively, (A 1) becomes 

. n  n 

The terms for which i = j are the self-energy contributions which have previously 
been found to be (Arendt 1993b) 

The terms for which i # j are the mutual interaction energies. Using the fact that the 
vortices are small in extent, these are found to be 

ViajdS N i K j v i ( . Y j , z j )  

Using (A 3) and (A 4) in(A 2), we find the total kinetic energy 

By comparing (2.15) and (A5), we see that the Hamiltonian is proportional to the 
kinetic energy: H = (3l2/p0)Ek. 

Consider next the total linear momentum of the flow. Because the integral of pu 
over all space is ill-defined in general (Batchelor 1967; Parker 1985), we will simply 
show that the linear momentum is proportional to C lciz? without determining the 
constant of proportionality. To do this, we first expand the streamfunction of a 
collection of vortices in the far field. Using z = R sin 8 and y = R cos 8 in (2.1), and 
letting R + co, we obtain 

N x K~Z? + O(R-2) .  W E - - - - -  
po 4sin38 

i=l 
2n12 3 R 

The linear momentum is then found from 

where the area of the integration is all space. Now, since y R-' in the far field, 
we cannot substitute y directly into (A7), as the integral over all space will not be 
well-defined. However, consider two flows each having the same value of C rciz?. The 
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streamfunction for the difference between the two flows is then Ipdifference - O(R-2). 
Using this in (A7) and letting R -+ 00, we find that Pdifference - O(R-l)  -+ 0. Thus, 
two flows having the same value of C rciz! have the same linear momentum, and we 
conclude that 

N 

i=l 

This momentum is in the $-direction by virtue of the fact that the linear momentum 
in the 2-direction must be identically zero. To prove this, note that the 2-directed 
linear momentum is the integral of the 2-directed mass flux. However, because of 
the impenetrable upper boundary on the fluid layer, the total mass flux across any 
horizontal plane is identically zero, and so the 2-directed linear momentum is zero. 

Appendix B 
In this Appendix, we review the Hamiltonian formulation of two-dimensional 

uniform-fluid vortex dynamics, with emphasis on the two-vortex problem. To begin, 
it has long been known (Kirchhoff 1876; Aref 1983; Batchelor 1967) that the dynamics 
of two-dimensional point vortices in a uniform fluid admits the Hamiltonian 

where the double sum is not to include i = j ,  and the constants of the motion, 

where we have assumed that Ci xi # 0. The constants of the motion H ,  Z ,  Y ,  and 
D2 may be shown to correspond to the kinetic energy, the two components of the 
linear momentum, and the angular momentum respectively. 

For the particular case of two vortices, equations (B 1)-(B 4) may be combined to 
yield 

and 

Thus, the two vortices each follow circular paths about a common centre, but with 
different radii. This is true for all cases except for icl + ic2 = 0. In that case, the vortex 
pair propagates in a straight line and the separation between the two is unchanging. 
This might be considered a special case of the circular trajectory where the centre of 
the circle is removed to infinity and the radius becomes infinitely large. 

The case of the stratified fluid bounded above studied in the present paper is 
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somewhat analogous to the case of a uniform-density fluid bounded by a wall. To 
permit a comparison, we briefly review the details of the two-vortex problem in such 
a fluid. Let two vortices with circulations I C ~  and ~2 be located at ( y l ,  z1) and (y2, z2) 
respectively (with zi < 0), and suppose that a free-slip wall at z = 0 truncates the 
fluid layer. Using images to take account of the wall, the Hamiltonian is found from 
( B  1) to be 

The constant of the motion ( B 2 )  is 

while D2 from (B4) is proportional to Z ,  and Y given by ( B  3) is identically zero. 
To briefly describe the topology of the Hamiltonian, we determine the fixed points 

only. From the form of the Hamiltonian, it is clear that there is a singular point at 
z1 = z2 and y1 = yz. However, this singular point is not attained when r < 0 and 
Z 2 0 for the same reasons as discussed in $ 3  of the main body of the paper: the 
stronger vortex always lies above the weaker vortex. 

For fixed points having a finite value of H ,  i.e. steadily translating pairs of vortices, 
we search for local extrema of the Hamiltonian along yl - y2 = 0. Omitting the 
details, we find that dH/dzl  = 0 if 

(B 9) 

where r = I C ~ / K ~  and x = z2/z1. This cubic equation has only one real root; the root 
is greater than zero (as x has to be) when r < 0, and is given by 

x3 + 3rx2 + 3x + Y = 0, 

where each cubic root is chosen to be real. This fixed point can be shown to be an 
X-point, and is only attained when Z < 0. 

We may summarize the topology of the trajectories as follows. For r > 0, there is 
one 0-point at x = z2/z1 = 1 at which the Hamiltonian is singular. For r < 0 and 
2 < 0, there is again the 0-point at x = 1, but there is also an X-point with a finite 
value of H at a location given by ( B  10). For r < 0 and Z 3 0, there are no fixed 
points at all. 

Appendix C 
In this Appendix, we present a Hamiltonian formulation for two-dimensional 

vortex dynamics in an isothermal stratified fluid whose hydrostatic density is given 
by p = po exp(-kz). The development follows that in tj 2 for the polytropic stratified 
fluid. Here the self-propulsion of a circular vortex of radius b is given by (Arendt 
1993b) 

where y = 0.5772 ... is Euler’s constant. The streamfunction outside a single vortex is 
given by 
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where K O  is the zeroth-order modified Bessel function of the second kind. It may 
then be shown that the Hamiltonian for an N vortex system is 

where ci is found from the conservation of mass within the vortex: 

bi = ciexp [ q] 
The Hamiltonian equations of motion are given by (2.13) and (2.14) with yi = rciyi 
and ti = exp(-kzi). As in the polytropic case, only one constant of the motion in 
addition to the Hamiltonian exists; it is given by 

N N 

exp(-kZ) = 1 K~ exp(-kzi)/ C K ~ .  

i=l i=l 

The trajectory topology for the two-vortex problem using this Hamiltonian is briefly 
addressed in $4. 
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